
Heterogeneous Aviation Safety Cases: Integrating the Formal and the Non-formal

Ewen Denney, Ganesh Pai and Josef Pohl
SGT / NASA Ames Research Center

Moffett Field, CA 94035, USA
Email: {ewen.denney, ganesh.pai, josef.pohl}@nasa.gov

Abstract—We describe a method for the automatic assembly
of aviation safety cases by combining auto-generated argument
fragments derived from the application of a formal method to
software, with manually created argument fragments derived
from system safety analysis. Our approach emphasizes the
heterogeneity of safety-relevant information and we show how
such diverse content can be integrated into a single safety case.
We illustrate our approach by applying it to an experimental
Unmanned Aircraft System (UAS).

Keywords-Safety, Safety cases, Automation, Aviation, Hetero-
geneity, Unmanned Aircraft, Formal Methods.

I. INTRODUCTION

Safety cases are among the state of the art in technologies
for safety management, and their development has been
a common practice for the certification of safety-critical
systems in the nuclear, defense and rail domains [1]. The
requirement for a safety case has also been considered
in emerging international standards and national guide-
lines [2], [3]. The move towards safety cases represents a
departure from highly prescriptive safety standards, where
certification, particularly of software-intensive systems, is
often obtained by compliance with predefined objectives and
processes.

A safety case is “a structured argument supported by a
body of evidence that provides a compelling, comprehensi-
ble and valid case that a system is safe for a given application
in a given operating environment” [4]. In brief, it comprises a
set of safety claims (goals), supporting evidence (solutions),
an argument explaining what the evidence is, why the
evidence supports the claims together with the assumptions
made, and the context in which the claims, the argument, and
the evidence are to be considered. Safety cases are typically
constructed manually; this is time consuming, expensive, and
also quickly becomes unmanageable during iterative systems
and software development. Safety cases that reason about
software details specifically, are likely to grow super-linearly
in the size of the underlying software due to the increased
number of requirements that software must satisfy.

This problem is compounded when considering the preva-
lence and importance of domain-specific content, e.g., for
aviation systems, the size of a safety case, the diversity of its
content, and the level of assurance provided by such diverse
content especially pose challenges: aviation safety cases
need to reconcile heterogeneous content, including elements

from the system design, e.g., physical formulae, system
operation, e.g., maintenance procedures, and software to
allow a comprehensive safety assessment. For software,
the heterogeneity of evidence, context and assumptions is
especially evident when considering sources such as simu-
lation runs, unit tests, results of model-checking, proofs of
correctness, and the variety of tools used to generate them.

Furthermore, each of these sources provides a different
level of assurance. This affects the trustworthiness of the
evidence in the safety case and, in turn, the confidence that
can be placed in the the overall argument. Evidence from
formal verification, such as proofs of correctness, raises the
level of assurance that can be claimed for mathematical and
safety-critical software, typical in aviation systems. Indeed,
proofs are acknowledged to provide the highest level of such
assurance, compared with “non-formal” approaches.

To address these challenges of managing complexity,
heterogeneity, and improving trustworthiness, there is a need
for mechanisms for (a) the automated creation and assem-
bly of evidence-based safety arguments, and (b) improving
the confidence that can be placed in those arguments, by
integrating formal and non-formal reasoning. This paper
describes our method for semi-automatically creating and
assembling heterogeneous safety cases, to include arguments
from both formal and non-formal reasoning, with application
to a real aviation system. The paper makes the following
contributions:

(1) A methodology is given for semi-automatically creat-
ing a meticulous, end-to-end safety argument (Section III).
We illustrate its application on a real, experimental un-
manned aircraft system (Section II), and give example
fragments of an interim safety case (Section IV). To our
knowledge, few, if any, such examples exist in practice or in
the literature, where a safety argument is developed starting
from the level of the system down to low-level software
implementation details.

(2) Our approach combines traditional safety analysis
techniques with formal methods: we auto-generate safety
argument fragments for the software components of the
example system from formal proofs of correctness. Then,
we automatically assemble these with the manually created
safety arguments, obtained from traditional safety analysis,
which are applicable to the wider system context.

(3) We characterize the heterogeneity inherent in arguing

safety by identifying a diverse set of elements that con-
tributes to a comprehensive safety argument (relevant for
aviation in general and to the example system in particular).
We also illustrate how some of these are combined into a
safety case fragment for the example system.

II. ILLUSTRATIVE EXAMPLE

A. Target System Description

Our target system is the Swift Unmanned Aircraft System
(UAS) from NASA Ames. The UAS comprises a single
airborne system: the electric Swift Unmanned Aerial Vehicle
(UAV), a primary and secondary ground control station
(GCS) and communication links.

The UAV can be controlled on the ground by a pilot,
or can fly autonomously by following a pre-programmed or
uploaded nominal flight plan (i.e., a mission): a sequence
of commands (determining a set of waypoints) from takeoff
to landing. The pilot might take-off, land, or intercept at
any time. The off-nominal plan describes the actions of
the Contingency Management System (CMS), the failsafe
trajectory, the procedures to be followed on the ground, and
so on. The CMS is required is to keep the aircraft on range,
so that if any crash occurs, it happens “inside the box”.

The UAS can be operated in a semi-autonomous manner,
i.e., in the pilot in control (PIC) and computer in control
(CIC) modes. The ground station is operated by a GCS
Operator (GCSO) who calls out important state information
(e.g., the true airspeed) to the pilot. There may also be a
secondary (or research) pilot, who controls the aircraft in
the secondary pilot in control (SIC) mode. The GCSO can
transmit and upload commands to the UAV via the GCS,
and the pilot can control the UAV using a transmitter with
a joystick and trim tab. The primary pilot always instigates
a change of control via a safety switch.

B. System and Software Architecture

The overall system architecture is layered, with several
loosely-coupled modules implemented on the Reflection
Virtual Machine (RVM): a multi-component, event-driven,
real-time, configurable software framework. The architecture
consists of several execution layers: the base layer is the
Windows XP Embedded operating system running on the
UAV hardware. The CGL physics library runs on top of
this, followed by the RVM. Finally, the flight software
(FSW) is implemented on top of the RVM as a collection of
interconnected modules (including the autopilot itself), and
script files which describe specific mission configurations,
such as flight plans and specific parameters.

The two main modules of the autopilot are the flight
management system (FMS) and the controller (AP). Each
plays a role in controlling the aircraft control surfaces and, in
turn, three dimensional aircraft movement; namely forward
motion and rotation around the lateral (pitch), longitudinal
(roll), and vertical (yaw) axes. The aileron affects roll,

COMMAND FMSLATMODE FMSLONMODE

STOP DISENGAGED DISENGAGED

FLYTODIRECT FLYTOWAYPOINT ALTITUDE ATTAIN

FLYTOTRACK TRACKTOWAYPOINT ALTITUDE HOLD

CIRCLE CIRCLE TO ACCEL2VROT

TAKEOFF TO ACCEL2VROT TO FULLCLIMB

APPROACH WINGSLEVEL GLIDE

LAND FLARE FLARE

INVALID TAXISTOP

Figure 1. FMS commands and modes.

elevators (and throttle/speed control) affect pitch, while the
rudder affects yaw.

C. Example Operation and Control

A flight plan consists of a sequence of commands (Fig-
ure 1), to the UAV. Figure 2 depicts a landing profile, and
the transitions therein, when a LAND command is issued.
Based on the current state and the command being evaluated,
the control system periodically updates the control surface
positions, the calculations for which are phased in two
“directional” modes: longitudinal and lateral. Each mode
has several cases of relevant calculations, e.g., the LAND
command invokes only some of the cases shown under the
lateral (FMSLATMODE) and longitudinal (FMSLONMODE) modes
(Figure 1). During landing, if the current state (phase) is
“Descent”, only the TRACKTOWAYPOINT lateral mode will
be considered by the FMS with respect to the aileron output
control calculation. The transition criteria are defined in the
code but make use of system parameters which are set via
scripts.

Based on the current command, the FMS determines an
appropriate mode to be set in the AP, and evaluates different
cases of calculations, e.g., given the command in question,
to update the lateral control surface a specific APLATMODE
is set in the FMS. Then in the AP, this is the case considered
in computing the updated lateral control surface values. The
value computation is performed using Proportional-Integral-
Derivative (PID) controllers (loops). As such, each PID loop
will affect either a lateral, longitudinal, or speed control
surface, and will result in a value which will be output to (or
used in a calculation of the eventual output to) the actuator
of a single control surface.

D. Low-level Computations

Now, we describe a single sequence of computations
through the autopilot FMS and AP modules, executed un-
der specific mode and command conditions. The sequence
results in a signal to the aileron and a consequent change in
the UAV heading. The particular calculations occur in the
phases of a LAND command, namely Approach, Descent (or
Glide), and Flare (Figure 2). These phases are represented
in the code as mode transitions.

f = Flare Angle
d = Descent Angle

ha = Approach Altitude (AGL)
hf = Flare Altitude (AGL)

Approach

Descent
(Glide Slope)

Flare Transition Phase

Rd = hf / TAN(f)
Rd

(f)

Top of
Descent

Flare

Landing Waypoint Altitude

ap.m_landingDescentRate_fps = -25.0;

ap.m_landingFlareMaxAlt_ftAGL = 100;

ap.m_landingFlareMinAlt_ftAGL = 50;

ap.m_landingWheelsDownAlt_ft_AGL = 2.0;

ap.m_landingFlareMaxDescentRate_fps = -25.0

ap.m_landingFlareMinDescentRate_fps = -0.1

LAT: Wings Level
LON: Taxi Stop

FMSLAT: FLARE
LAT: XTrackNFB

FMSLON: FLARE
LON: Vspeed
FixedThrottle

FMSLAT: TRACKTOWAYPOINT
AP LAT: XTRACK

FMSLON: FMSLONMODE_GLIDE
LON: Taxi Stop

Figure 2. LAND command induced landing profile.

Aileron control
(m_aileron_m1p1)

Desired Heading
(PID.m_desiredHeading_rad)

Current Heading
(AD.m_heading_rad)

Desired Roll
(PID.m_desiredRoll_rad)

Current Roll
(AD.m_roll_rad)

Key: (variable name)
PID = m_pidTarget

AD = AircraftData

Source Waypoint
(srcWpPos)

CrossTrack Error
(PID.m_currentXTrackErr_rad)

CrossTrack Delta Heading
(PID.m_xtracksignal_deltaheading)

Destination Waypoint
(dstWpPos) Current Position

(CurrACPos)

Line Slope for Xtrack
(M)

Line Intercept For
Xtrack (B)

Current to Destination
Vector (lineAC2Ds)

Source to Destination
Vector (lineSc2Ds)

Input
variables

Computed
variables

Figure 3. Dependencies in aileron control computation.

The variable m_aileron_m1p1 in the code holds the
value that will be routed to the aileron actuator through the
Reflection framework. The calculation of the value stored in
m_aileron_m1p1 eventually traces back to the FMS class
and the Autopilot class.

Figure 3 shows how the actual computations needed to
make adjustments in the aileron control surface is dependent
on a number of cascading calculations. At each level, a value
is derived from PID loops and then used, in conjunction with
the aircraft state, in a calculation at a lower level. For the
aileron control surface, this corresponds to the cross-track,
heading, roll angle, and aileron PID loops as shown. To
adjust the aileron, the adjustment to the current heading is
to be determined. Then, from the UAV state information
(i.e., the current position, the source and the destination
waypoints), a new heading is derived.

Thereafter, geometric calculations determine the UAV
heading and position relative to the line connecting the
source and destination. The distance of the UAV from this
line is the cross-track (Xtrack) error. This is the parameter
passed to the PID loop that determines the heading change
needed to reach the destination waypoint, the delta heading.
The desired heading takes into account both the heading
based on the line from the source to destination and the
delta heading.

From the difference in the current heading and the desired

Navier-Stokes
CFD

Range of hinge
moments

Flight test maneuver
data – trim to level

flight/ fully instrumented

Control system
design

Estimated stability
derivatives and
modes/poles

Linearized flight control
model (one specific trim

condition)

Aerodynamics
lookup tables

Sizing of
motors/actuators

System
ID

Aircraft Design Simulation Controller Design Flight Test

Back off initial gains,
adjust with flight test

data

Tune

Modification of
Control surfaces

Manufacturer
data sheets

Geometric model

X-Foil and
LinAir

Validates

Pilot
training

Static
margins

HILS / Iron-Bird
test data

Ground
TestsHandling

characteristics

First design

Subsequent designs

Before first flight

6-DOF simulation

Figure 4. Abstract design flow for the Swift UAV.

heading (the error), a new desired roll can be determined.
Finally, to initiate a change in the roll (and hence, the
heading), the aileron must be moved by an amount which
will produce the desired roll. This is computed from the
aileron PID loop which takes the roll error (the difference
between the current aircraft roll and the desired roll as
calculated) as an argument. The PID loop output is finally
stored in the variable m_aileron_m1p1.

III. APPROACH

A. Characterizing Heterogeneity

We begin by explicitly characterizing the heterogeneity
to be considered for system safety and safety argumenta-
tion. This is an essential step in tailoring a generic safety
methodology for a specific application domain; in our case,
aviation. We believe the main value of this, for the system
safety process, is to manage the wider context of safety, i.e.,
to identify and manage hazards arising from system interac-
tions. In addition, although evidence-based argumentation is
largely product focused, safety implications also arise from
other related sources, e.g., process and procedural deviations
during operation, incorrect/implicit assumptions, etc.

Consider the high-level design flow for (a part of) the
control system and the control surfaces of the UAV (Fig-
ure 4). The design begins with generated models of the
intended system, which are related to the actual hardware
to be mounted on the aircraft. The models also provide six
degrees of freedom (6-DOF) simulation used to fine tune
the UAV implementation. The control system is iteratively
tested, and at each iteration it is also tuned against the
simulation and refined with different parameters.

From Figure 4, it is evident that heterogeneous sources
of assumptions, context and evidence exist, and ought to
be considered, when analyzing the safety of this system. In
general, these include elements such as: (1) procedural, de-
velopment and safety standards imposing design and safety

Hazard
Identification

Risk Analysis
Severity
Likelihood
Categorization
Prioritization

Hazards ►

Concept Documents ►
SWIFT UAS design documents ►

(System + Software)
Safety

Argumentation

Hazards with
unacceptable
risk ►

EAV design documents ►

System Safety Process (FAA / NASA / MIL STD 882D / ...)

Risk reduction/
Mitigation

Safety
Requirements ►

Concept Documents ►
SWIFT UAS design documents ►

Other relevant documents ►

SWIFT UAS Safety Case ►

▼ Safety Requirements

Preliminary hazard list ►

Hazards with
unacceptable risk ▼

Uncertainty
AssessmentSources of Uncertainty ►

SWIFT UAS
Safety Case ▼

Uncertainty Measurements ►

Confidence in
SWIFT UAS Safety

Case ▼Safety Argumentation Process

Operating procedures ►

Figure 5. Safety assurance methodology.

constraints on the system; (2) procedures describing opera-
tions, e.g., for maintenance (3) mathematical theory, e.g., the
theory of aerodynamic stability (4) implicit assumptions, i.e.,
simplifying assumptions such as decoupled dynamics (5) ve-
hicle flight logs, e.g., which show the system behavior under
specific flight conditions (6) calibration experiments such as
those used to calibrate sensors (7) hardware tests, e.g., static
load tests used for determining actuator sizes (8) aircraft
models, e.g., geometric, and computational fluid dynamics
(CFD) models (9) data-sheets providing component parame-
ters and specifications (10) simulations which progressively
evaluate the actual system to be flown (11) software models
of the sensors, actuators, commands, and flight management
(12) range safety calculations providing estimates on the
expected casualty rate based on the area in which the aircraft
is operated (13) expert opinion often including decisions
which might not be explicitly documented.

B. Safety Assurance Methodology

The main philosophy of our safety assurance methodology
(Figure 5) is that the system safety process drives the safety
argumentation process.

1) System Safety Process: Our system safety process
(Figure 5) is based on the framework of a safety risk
management plan [5], and includes safety considerations into
system design at an early stage through hazard identification,
risk analysis, and risk management. In brief, hazard identifi-
cation and risk analysis involves respectively (i) determining
those situations or conditions relevant to the system which, if
left uncontrolled, have the potential to cause an undesirable
event, and (ii) characterizing the consequences, severity and
likelihood of such situations/conditions. Risk management
broadly uses the outcomes of risk analysis to prioritize and
mitigate risks. Note that Figure 5 does not indicate the iter-
ative nature of the safety process, and that it is phased with
system development. Thus, system-level safety requirements
would be initially derived during requirements engineering,
while lower-level safety requirements are developed during
system design. Additionally not all of the input shown is
required, or used, in all the iterations.

As input to these steps, we use the identified heteroge-
neous sources (Section III-A) including, but not limited to,

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

Function
Specifications

Test

Domain Theory
(Axioms)

TestMathematical
Model

Inspect

Inspect

Safety analysis
(System and Software)

Partially define

Hazards
IdentifyMitigate

Figure 6. Software verification methodology.

the concept of operations, available design documentation,
and previously identified hazards (captured in a preliminary
hazard list). We define mitigation measures for those hazards
considered as having unacceptable risk, from the outcome
of hazard identification and risk analysis. One specific out-
come of the risk reduction/mitigation step is requirements
on system safety. These requirements take several forms,
including constraints on the design, guidelines and/or pro-
cedures for maintenance, operation, etc. See Section IV-A
for an example of such analysis.

2) Safety Argumentation: The outcome of the system
safety process, in effect, triggers the safety argumentation
process (Figure 5). The general idea is to use a structured
safety case, to systematically argue that all identified hazards
have been eliminated or mitigated, such that mishap risks
have been reduced to acceptable levels.

The safety argumentation process is applied starting at
the level of the system in the same way as the system safety
process, and it is repeated at the software level. Abstractly,
the main steps in creating a software (and system) safety
case are to: (a) create safety claims, e.g., indicating the
mitigation of relevant hazards, and (b) link the evidence that
supports the claims via an appropriate and structured argu-
ment. These steps are non-trivial, but can be operationalized
through well-developed methodologies [6], [7].

3) Software Verification Methodology: We use our soft-
ware verification methodology (Figure 6) to create part of
the software safety argument, (in particular, the lower levels).
This also has connections to the wider system safety process,
as shown. To verify the flight software, we use formal
verification of the implementation against a mathematical
specification and test low-level library functions against
their specifications. In this paper we concentrate on formal
verification using AUTOCERT [8], and defer testing, and
verification using other tools to future work.

The specification formalizes software requirements which,
in turn, are derived from system requirements during the
safety analysis. The formal verification takes place in the
context of a logical domain theory (i.e., a set of axioms
and function specifications). Axioms can be subjected to

assumptions
airplaneData->m_heading_rad::

current(heading).
airplaneData->m_pos_altitude_ft::

current(altitude).
airplaneData->m_pitch_rad::

current(pitch).
airplaneData->m_pos_north_ft::

pos(north).
airplaneData->m_pos_east_ft::

pos(east).
airplaneData->m_roll_rad::

current(roll).
srcWpPos ::pos(ne).
dstWpPos ::pos(ne).
currACPos::pos(ne).

requirements
output->m_aileron_m1p1 ::desired(aileron).
output->m_elevator_m1p1::desired(elevator).

Figure 7. Specification (excerpt): assumptions and requirements.

definition(calc_error
, [’calculate error in’, T]
, Y-Z
, [Y::current(T), Z::desired(T)]
, [_::error(T)]

).

definition(initial_heading
, [’initial heading from’, Src, ’to’, Dst]
, CalcHeadAngle(Dst[0], Dst[1], Src[0], Src[1])
, [Dst::pos(ne), Src::pos(ne)]
, [_::rad]

).

Figure 8. Annotation schemas (excerpt): heading and error.

increasing levels of scrutiny, going from simply assuming
that they are valid, to inspecting them, up to testing them
against a computational model which, itself, is inspected [9].

4) Formal Verification: Figure 7 shows a specification
fragment consisting of assumptions about the current aircraft
state and flight plan, and requirements on signals to the
control surfaces. currACPos is the current aircraft position
in the North-East frame of reference, and srcWpPos and
dstWpPos are the current and next waypoints, respectively,
in the flight plan.

Given these assumptions on the aircraft state, we must
show that the code that implements the descent phase of the
LAND command (Figure 2) correctly modifies the aileron and
elevator. To do so, we verify the code against its specifica-
tion using AUTOCERT, which infers logical annotations on
the code under verification, using mathematical annotation
schemas (Figure 8). AUTOCERT then applies a verification
condition generator (VCG), which uses the annotations
and function specifications (Figure 9) to generate a set of
verification conditions (VCs), logical conjectures which are
sent to a suite of automated theorem provers (ATPs) along
with the axioms (Figure 10). Most VCs conjecture that the
regulation of a variable within some bounds maintains a
given property.

Both the axioms and verification conditions are given in
first-order logic, and use predicates that denote geometric

function(aileron_out
, [’convert roll error in’, E,

’to desired aileron in’, D]
, m_pid_RollErr2Aileron->Update1(E)
, [E::error(roll)]
, [D::desired(aileron)]

).

Figure 9. Function specification: roll error to aileron.

desired_heading_from_delta:
∀X.∀D. has_unit(X,desired(delta(heading)))∧

has_unit(D,initial(heading))
⇒ has_unit(D+X,desired(heading))

desired_heading_lower_bound:
∀H. has_unit(H,desired(heading)) ∧ (H < −π)

⇒ has_unit(2π,desired(heading))

desired_heading_upper_bound:
∀H. has_unit(H,desired(heading)) ∧ (π < H)

⇒ has_unit(-2π,desired(heading))

Figure 10. Axioms (excerpt): desired heading.

and navigational concepts, including physical units such
as heading and roll, control surfaces like aileron and
elevator, frames of reference, such as lla (lat-long-alt)
and ne (North-East), and aspects of properties such as
desired(T), current(T), error(T), where T is a unit in
the aircraft state. The axioms express the definition of geo-
metric properties, and the various adjustments in orientation
through different quadrants, based upon dependencies on the
aircraft state and the desired value needed to accomplish the
movement of the control surface.

An annotation schema describes a computation pattern
along with its logical pre- and post-conditions. Schemas
are compiled into low-level patterns that match against the
code (for details, see [10]). For example, calc_error states
that if Y and Z represent current and desired values of
some state variable T, then Y-Z computes the error in T.
After matching against the corresponding code fragment and
inserting pre- and post-conditions, the tool will then recur-
sively search for definitions of Y and Z, and so on. Similarly,
initial_heading matches against code that calls a library
function to compute the heading in radians, given that Dst
and Src represent the aircraft position in the ne frame.
Figure 9 specifies a PID function: given the error on the roll
as input, the output is the desired value of the aileron. Spec-
ifications, schemas, and axioms can be extended with addi-
tional non-logical information [11] such as justifications and
contexts (not shown here). Formally verifying the require-
ment output-> m_aileron_m1p1::desired(aileron)

generates 51 VCs which can then be proven using a suite
of first-order ATPs.

C. Assembling the Safety Case

There are two ways in which a formal method can be
integrated with the construction of a safety case. Going in
one direction, the output of AUTOCERT can be transformed
into a safety case fragment. Going in the other, safety case

fragments can be transformed into formal specifications that
are then input to AUTOCERT.

1) From Formal Proofs to Safety Cases: AUTOCERT
generates a document (in XML) with information describing
the formal verification of requirements. The core of this
is the chain of information relating requirements back to
assumptions. Recall that Figure 3 illustrated the sequence
of calculations used to compute the aileron control variable
from several inputs drawn from the current aircraft state and
the flight plan.

Each step therein is described by (1) an annotation schema
for the definition of a program variable, (2) the associated
VCs that must be shown for the correctness of that definition,
and (3) the variables on which that variable, in turn, depends.

We derive the goals (and subgoals) of the safety case
from the annotation schema. The subgoals are the dependent
variables from those annotation schema. We represent each
VC related to a goal as a subgoal. An argument for a VC is
a proof, generated using a subset of the axioms. This proof
forms the evidence connected to the VC goal, and includes
the prover used as a context. Function specifications from
external libraries used in the software and its verification also
appear as goals. Arguments for these goals can be made with
evidence such as testing or inspection. Each subgoal derived
from an annotation schema is a step in the verification
process. Figure 13 gives an example of such a step.

During the process of merging the manually created and
the auto-generated safety cases, we replace specific nodes
of the manually created safety case with the tree fragments
generated from AUTOCERT; specifically, the top-level goals
of the latter are grafted onto the appropriate lowest-level
nodes of the former. These nodes are denoted with unique
comments, autocert:id, relating the node to a tree in
the automatically created file, meaning that the goal with
tag id is to be solved with AUTOCERT.

2) From Safety Cases to Formal Specifications: Often, a
safety case fragment may be created before the software
verification is completed. In this case, we can use the
autocert:id annotations on the nodes to generate a
formal specification. Based on the type of node in which the
identifier occurs, the tool infers whether the labeled node is
a requirement or an assumption. After running AUTOCERT
on the generated specification, we can graft the resulting
proofs back into the safety case.

IV. SAFETY ANALYSIS

A. Hazard Analysis

During hazard identification and preliminary hazard ana-
lysis (PHA) for the Swift UAS, we systematically identified
and documented the known hazards, while brainstorming for
new hazards. Hazards identified thus far include those in-
duced from subsystem failures, deviations from procedures,
as well as interactions. We performed this step in close
cooperation with the Swift UAS engineering team, using

documents related to the concept of operations, preliminary
design, operating procedures, as well as other heterogeneous
information (as identified in Section III-A), as input.

We also applied failure modes and effects analysis
(FMEA) as part of bottom-up reasoning for hazard iden-
tification. Although the engineering of the Swift UAS is
ongoing and FMEA is typically employed when low level
system details are sufficiently well known, in our case
FMEA was feasible due to the significant domain knowledge
of the engineering team and, in part, due to the reuse of
certain systems from the EAV.

Table I shows an excerpt of the hazard analysis, consid-
ering failure hazards in the avionics software (specifically,
the autopilot) during the descent phase of the landing profile
induced by the LAND command (Figure 2). In Table I, the
risk category for the autopilot controller failure hazard is
given as 2B, which is considered as unacceptable risk, based
on the risk classification table given in [5]. The table also
shows the consequent definition of the relevant functional
safety requirements which, when correctly implemented, are
expected to mitigate the hazard.

B. Swift UAS Safety Case

In this paper, we use the Goal Structuring Notation
(GSN) [6] to document our safety case. We present an end-
to-end “slice” of the overall safety case for the Swift UAS
shown as a bird’s eye view in Figure 11. The safety case
starts with a top-level safety goal: The Swift UAS is safe in
the context of a specific mission, in a specific configuration,
on the defined range where it is to be operated, under
specific weather conditions. This goal is justified, in part,
through an argument that the airborne system (the UAV)
is safe. This itself consists of the arguments assuring the
mitigation of UAV hazards including, in particular, the
mitigation of the autopilot controller failure hazard during
descent (Table I). The latter is demonstrated, in part, by
an argument that the autopilot is correct. This, in turn, is
justified by an argument generated from a formal proof
of correctness (Section III-B4) of the computations of the
values of the aileron during descent (Section II-D).

Thus, what we have shown in Figure 11 is only a small
part of the overall Swift UAS safety case, which also
contains arguments assuring the safety of the ground system,
the communication infrastructure, and the operation, besides
that of the airborne system. Broadly, the safety case slice
in Figure 11 comprises a manually created fragment and
an automatically generated fragment. Each of these is now
described in greater detail.

1) Manually Created Safety Argument: The manually
created safety case is based on the hazard analysis performed
in Section IV-A. We make the case for the safety of the
airborne system by argument over all identified hazards
(which can be considered as an instance of the hazard
directed breakdown pattern [12]) and create the argument

Table I
EXCERPT FROM SWIFT UAS HAZARD ANALYSIS.

ID
HAZARD /
SCENARIO

DESCRIPTION
POTENTIAL CAUSES EFFECT ON

SYSTEM LIKELIHOOD SEVERITY RISK
CATEGORY

MITIGATION
MEASURES CORRECTIVE ACTION SAFETY REQUIREMENT

PHA_DE.APP
_AVCS_012

Flight management
system (FMS) failure

Incorrect computation
of control surface
signals

Remote Major 3B Verify that specification is
consistent with theory

[FSP_AVCS_004] When FMS failure is
detected, it is always the case that
failsafe autopilot eventually takes
control within a specified time duration

PHA_DE.APP
_AVCS_015

Autopilot controller
module failure Loss of flight Remote Hazardous 2B

(1) Verify legality of issued
commands
(2) Guarantee correct
interpretation of
commands

[A1] Commands must be interpreted
correctly
[A2] The autopilot executes safe
maneuvers for all commands during
descent.

1. Deadlocks
2. Timing errors
3. Memory corruption
4. Incorrect specification
5. Incorrect implementation
6. Inaccurate/ incorrect
assumptions
7. Wrong interpretation of
theory

(1) Ground station
pilot controller
overrides autopilot

(2) Failsafe
autopilot
intervenes when
failure of autopilot
detected

S P20

Correc tness of the
computation at line

706

STRATEG Y

SP20M0

elevator_out

MO DEL

In context of

G.VC20

ap_frame_023_0052 is proven

GOAL

In context of

GS .V C20

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS.VCPr over20

Prover: SSCP A- --0.0

MO DEL

In contex t of

GS P.VC20

P roof:
ap_frame_023_0052proof

SOLU TIO N

Is solved by

G .V C21

ap_frame_023_0053 is pr oven

G OAL

In context of

GS.VC21

Prove us ing Automated
Theor em Provers

STR ATE GY

Is solved by

GS.VC Prover21

Prover : SS CPA---0.0

MOD EL

In context of

GSP.VC21

Proof:
ap_frame_023_0053proof

SO LU TION

Is solved by

G.DVar 220L0

pitchError_rad has property
has_unit(pitchError_rad, error(pitch))

 es tablished at line 706 of
/home/jmpohl/new_examples /autopilot/second_try /ap.cpp

GO AL

Is solved by

S.DVar220L0

Correc tness of the
computation at l ine

702

STRATEG Y

Is solved by

SP.DVar 220M1L0

calc_error

MOD EL

In contex t of

G.VCDVar 220L0

ap_frame_023_0052 is proven

GOAL

Is solved by

GS .V CDVarp220L0

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GSP.VC DVarp220L0

Proof:
ap_frame_023_0052.proof

SOLU TIO N

Is solved by

G.VCD Var221L0

ap_frame_023_0053 is proven

GO AL

Is solved by

GS.VCDVar p221L0

Prove us ing Automated
Theorem Prover s

STR ATEG Y

Is solved by

GS.Pr over 221L0

Prover : SSC PA---0.0

MOD EL

In contex t of

G SP.VCDVar p221L0

Proof:
ap_frame_023_0053.proof

SO LUTION

Is solved by

G.VCDV ar 222L0

ap_frame_023_0054 is proven

GO AL

Is solved by

GS .V CDVarp222L0

Pr ove us ing Automated

Theorem Provers

STRATEG Y

Is solved by

GS.Pr over222L0

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP .V CDVarp222L0

Proof:

ap_frame_023_0054.proof

SOLU TIO N

Is solved by

G .V CDVar223L0

ap_frame_026_0066 is proven

G OAL

Is solved by

GS.VCDV arp223L0

Prove us ing Automated

Theor em Pr overs

STR ATEGY

Is solved by

GS.Prover223L0

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCDV ar p223L0

Proof:

ap_frame_026_0066.proof

SO LUTION

Is solved by

G.VCD Var224L0

ap_frame_026_0067 is proven

GO AL

Is solved by

G S.VCDVarp224L0

P rove using Automated

Theorem Provers

STRATEG Y

Is solved by

GS.Pr over224L0

Prover: SSC PA---0.0

MO DEL

In context of

GSP .V CDVarp224L0

Proof:

ap_frame_026_0067.proof

SOLU TIO N

Is solved by

G.VCDVar225L0

ap_frame_026_0070 is proven

G OAL

Is solved by

GS.VCD Varp225L0

Prove us ing Automated

Theorem P rovers

S TR ATEGY

Is solved by

G S.Prover225L0

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCD Varp225L0

Pr oof:

ap_frame_026_0070.proof

S OLUTION

Is solved by

G.VCD Var226L0

ap_frame_026_0071 is proven

GO AL

Is solved by

GS.VCDVar p226L0

Prove us ing Automated

Theorem Provers

STRATEG Y

Is solved by

GS.Pr over226L0

Prover: SSC PA---0.0

MODE L

In context of

GS P.VCDVar p226L0

Proof:

ap_frame_026_0071.proof

SO LU TION

Is solved by

G.DVar 2270L1

airplaneData->m_pitch_rad has
property

has_unit(airplaneData->m_pitch_rad,
current(pitch))

GO AL

Is solved by

G .DV ar2271L1

m_pidTargets->m_des iredpitch_rad
has property

has_unit(m_pidTargets->m_des iredpitch_r ad,
des ired(pitch))

 es tablished at l ine 702 of
/home/jmpohl/new _examples /autopilot/second_try /ap.cppG OAL

Is solved by

S.DVar2271L1

Correc tness of the
computation at l ine

633

STR ATE GY

Is solved by

SP.DVar 2271M1L1

des ired_pitch

MOD EL

In contex t of

G.DVar22710L2

alti tudeError_ft has proper ty
has_unit(alti tudeError_ft,

error(alti tude))
 es tablished at l ine 633 of

/home/jmpohl/new_examples /autopilot/second_try/ap.cpp
GOAL

Is solved by

S.DVar 22710L2

C orrectness of the
computation at l ine

630

STRATEGY

Is solved by

SP.DVar 22710M1L2

calc_err or

MOD EL

In contex t of

G.VCDVar 22710L2

ap_frame_025_0055 is proven

GOAL

Is solved by

GS.VC DVarp22710L2

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS.Prover22710L2

Prover: SSCP A- --0.0

MO DEL

In contex t of

GSP .V CDVarp22710L2

P roof:
ap_frame_025_0055.proof

SOLUTIO N

Is solved by

G .VC DVar22711L2

ap_frame_026_0068 is pr oven

G OAL

Is solved by

GS.VCDV ar p22711L2

Prove us ing Automated
Theorem Provers

STR ATE GY

Is solved by

GS.Prover22711L2

Prover : SS CPA---0.0

MOD EL

In context of

GSP.VCDV ar p22711L2

Proof:
ap_frame_026_0068.pr oof

SO LUTION

Is solved by

G.VCDV ar 22712L2

ap_frame_026_0069 is proven

GO AL

Is solved by

GS .V CDVarp22712L2

Pr ove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over22712L2

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP .V CDVarp22712L2

Proof:
ap_frame_026_0069.proof

SOLU TIO N

Is solved by

G.DVar227130L3

airplaneD ata->m_pos_alti tude_ft has
property

has_unit(airplaneD ata->m_pos_alti tude_ft,
current(alti tude))

GOAL

Is solved by

G.DVar227131L3

m_pidTargets->m_des iredAltitude_ft
has property

has_unit(m_pidTargets->m_des iredAlti tude_ft,
des ired(alti tude))

G OAL

Is solved by

GS.Prover220L0

P rover: SSCP A-- -0.0

MO DEL

In context of

G.VC10

ap_frame_003_0001 is proven

GO AL

GS .V C10

Pr ove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.VCPr over10

Prover: SSCP A---0.0

MO DEL

In contex t of

GS P.VC10

Proof:
ap_frame_003_0001proof

SOLU TIO N

Is solved by

G.VC11

ap_frame_003_0002 is proven

G OAL

GS.VC 11

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

G S.V CProver11

P rover: SSCPA-- -0.0

MOD EL

In contex t of

G SP.VC11

P roof:
ap_frame_003_0002pr oof

S OLUTION

Is solved by

SP10

Correc tness of the
computation at l ine

542

STR ATEG Y

In context of In contex t of

SP10M0

aileron_out

MOD EL

In contex t of

G.DVar120L0

rol lError_rad has property
has_unit(rollErr or _r ad, error(rol l))

 es tablished at l ine 542 of
/home/jmpohl/new_examples/autopilot/second_try/ap.cpp

G OAL

Is solved by

S.DVar 120L0

C orrectness of the
computation at l ine

538

S TRATEGY

Is solved by

SP.DV ar 120M1L0

calc_error

MO DEL

In contex t of

G.VCDVar 120L0

ap_frame_003_0001 is proven

G OAL

Is solved by

GS.VC DVarp120L0

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS.Prover120L0

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCD Varp120L0

P roof:
ap_frame_003_0001.proof

S OLUTION

Is solved by

G.VC DVar121L0

ap_frame_003_0002 is proven

GO AL

Is solved by

GS.VCDVar p121L0

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over 121L0

Prover: SSC PA---0.0

MODE L

In contex t of

GS P.VCDVar p121L0

Proof:
ap_frame_003_0002.proof

SO LU TION

Is solved by

G .V CDVar122L0

ap_frame_003_0003 is pr oven

G OAL

Is solved by

GS.VCDV arp122L0

Prove us ing Automated
Theor em Pr overs

STR ATEGY

Is solved by

G S.P rover 122L0

Prover: SS CPA---0.0

MOD EL

In context of

GSP.VCDV ar p122L0

Proof:
ap_frame_003_0003.proof

SO LUTION

Is solved by

G.VCD Var123L0

ap_frame_011_0037 is proven

GO AL

Is solved by

G S.VCDVarp123L0

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over123L0

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP .V CDVarp123L0

Proof:
ap_frame_011_0037.proof

SOLU TIO N

Is solved by

G.VCDVar124L0

ap_frame_011_0038 is proven

G OAL

Is solved by

GS.VCD Varp124L0

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS.Prover124L0

Prover: SSCP A---0.0

MO DEL

In context of

GSP.VCD Varp124L0

Pr oof:
ap_frame_011_0038.proof

S OLUTION

Is solved by

G.VCD Var125L0

ap_frame_011_0040 is pr oven

GO AL

Is solved by

GS.VCDVar p125L0

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS .P rover 125L0

Prover : SS CPA---0.0

MOD EL

In contex t of

GS P.VCDVar p125L0

Proof:
ap_frame_011_0040.proof

SO LU TION

Is solved by

G.DVar1260L1

airplaneData->m_roll_rad has
property

has_unit(airplaneD ata->m_roll_rad,
curr ent(rol l))

G OAL

Is solved by

G.DVar1261L1

m_pidTargets->m_des iredr oll_rad
has pr operty

has_unit(m_pidTargets->m_des iredroll_rad,
des ired(rol l))

 es tablished at l ine 538 of
/home/jmpohl/new _examples/autopilot/second_try/ap.cppG OAL

Is solved by

S.DVar 1261L1

C orrectness of the
computation at l ine

411 to l ine 412

S TRATEGY

Is solved by

SP.DV ar 1261M1L1

des ired_r oll

MOD EL

In context of

G.VCDV ar1261L1

ap_frame_005_0004 is proven

GO AL

Is solved by

G S.V CDVarp1261L1

P rove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over1261L1

Prover: SSC PA---0.0

MO DEL

In context of

GSP.VC DVarp1261L1

Proof:

ap_frame_005_0004.proof

SOLU TIO N

Is solved by

G.VCDVar1262L1

ap_fr ame_005_0005 is proven

G OAL

Is solved by

GS.VCD Varp1262L1

Prove us ing Automated
Theorem Pr overs

STR ATEGY

Is solved by

GS.Prover1262L1

Prover: SS CPA---0.0

MOD EL

In contex t of

GSP.VCDV ar p1262L1

Proof:

ap_frame_005_0005.proof

SO LUTION

Is solved by

G.VCD Var1263L1

ap_frame_011_0037 is pr oven

GO AL

Is solved by

G S.VCDVar p1263L1

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over 1263L1

Prover: SSC PA---0.0

MO DE L

In context of

GSP .V CDVarp1263L1

Proof:

ap_frame_011_0037.pr oof

SOLU TIO N

Is solved by

G.VCDVar 1264L1

ap_frame_011_0038 is proven

G OAL

Is solved by

GS.VC DVarp1264L1

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS.Prover1264L1

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCDV arp1264L1

Pr oof:

ap_frame_011_0038.proof

S OLUTION

Is solved by

G.DV ar 12650L2

headingEr ror_r ad has property
has_unit(headingEr ror_rad,

error(heading))
 es tablished at l ine 411 of

/home/jmpohl/new_examples /autopilot/second_try /ap.cpp
GO AL

Is solved by

S.DVar12650L2

Correc tness of the
computation at l ine

407

STRATEG Y

Is solved by

G.VCDV ar12650L2

ap_frame_005_0004 is proven

GO AL

Is solved by

G S.V CDVarp12650L2

P rove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS .P rover 12650L2

Prover: SSC PA---0.0

MODE L

In contex t of

GS P.VCDVarp12650L2

Proof:
ap_fr ame_005_0004.proof

SOLU TIO N

Is solved by

G.VCDVar12651L2

ap_fr ame_005_0005 is proven

G OAL

Is solved by

GS.VCD Varp12651L2

Prove us ing Automated
Theorem Pr overs

STR ATEGY

Is solved by

GS.Prover12651L2

Prover: SSCP A- --0.0

MO DEL

In context of

GSP.VCD Varp12651L2

Proof:
ap_frame_005_0005.proof

SO LUTION

Is solved by

G.VCD Var12652L2

ap_frame_005_0006 is proven

GO AL

Is solved by

G S.VCDVar p12652L2

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

G S.P rover 12652L2

Prover : SS CPA---0.0

MOD EL

In context of

GS P.VCDVar p12652L2

Proof:
ap_frame_005_0006.proof

SOLU TIO N

Is solved by

G.VCDVar 12653L2

ap_frame_006_0007 is proven

G OAL

Is solved by

GS.VC DVarp12653L2

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS.Pr over12653L2

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP.VCD Varp12653L2

P roof:
ap_frame_006_0007.proof

S OLUTION

Is solved by

G.VC DVar12654L2

ap_frame_006_0008 is proven

GO AL

Is solved by

GS.VCDVar p12654L2

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

G S.Prover12654L2

Prover: SS CPA---0.0

MOD EL

In context of

G SP.VCDVar p12654L2

Proof:
ap_frame_006_0008.proof

SO LU TION

Is solved by

G.VCDVar 12655L2

ap_frame_011_0020 is proven

GOAL

Is solved by

GS.VC DVarp12655L2

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS.Pr over12655L2

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP.VC DVarp12655L2

P roof:
ap_frame_011_0020.proof

SOLUTIO N

Is solved by

G .VC DVar12656L2

ap_frame_011_0021 is proven

G OAL

Is solved by

GS.VCDV ar p12656L2

Prove us ing Automated
Theorem Provers

STR ATE GY

Is solved by

GS.Prover12656L2

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCDV ar p12656L2

Proof:
ap_frame_011_0021.proof

SO LUTION

Is solved by

G.VCDV ar 12657L2

ap_frame_011_0037 is proven

GO AL

Is solved by

GS .V CDVarp12657L2

Pr ove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over 12657L2

Prover: SSC PA---0.0

MODE L

In contex t of

GSP .V CDVarp12657L2

Proof:
ap_frame_011_0037.proof

SOLU TIO N

Is solved by

G .V CDVar12658L2

ap_frame_011_0038 is proven

G OAL

Is solved by

GS.VCDV arp12658L2

Prove us ing Automated
Theor em Pr overs

STR ATEGY

Is solved by

GS.Prover12658L2

P rover: SSCPA-- -0.0

MO DEL

In context of

GSP.VCDV arp12658L2

Proof:
ap_frame_011_0038.proof

SO LUTION

Is solved by

G.VCD Var12659L2

ap_frame_011_0039 is proven

GO AL

Is solved by

G S.VCDVarp12659L2

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

GS P.VCDVarp12659L2

Proof:
ap_frame_011_0039.proof

SOLU TIO N

Is solved by

G .DV ar1265100L3

airplaneData->m_heading_rad has
property

has_unit(airplaneD ata- >m_heading_rad,
current(heading))

G OAL

Is solved by

G22_UAV _D escent_Avionics_SW_Autopilot_FMS

FMS des ign is
correc t

GOAL

N14968801

The autopilot interprets al l
commands correctly during descent

G OAL

E31_UAV_Descent_Actuation

Flight day
procedures

SO LUTION

G28_UAV_D escent_Avionics_CGL

C ommon G raphics
Library is correc t

G OAL

S14_UAV_Descent_Actuation

Argument of
mitigation over

identified causes of
ac tuation fai lure

hazard during descent
STRATEG Y

S42_U AV_Descent _A vionics

Argument that identified
causes of avionics failure
hazard during descent are

mitigated
STRATEG Y

G23_UAV_Descent_Avionics_SW_Autopilot _A P

AP des ign is correc t

GO AL

G49_UAV _D escent_Avionics_HW

H ar dw are fai lures during
descent are mitigated

GOAL

Is solved by

S1_Top

Argument of safety
over al l UAS

subsystems and
interac tions

between
subsystemsSTR ATE GY

S9_U AV_Descent_Avionics_S of twar e

Argument that
Avionics softw are
spec ification for

descent is correct

S TR ATEGY

C1_UAV

SWIFT U AV C oncept of
O perations (ConO ps)

C ONTEXT

N19965398

The autopilot executes safe
maneuvers for al l commands during

descent
GOAL

G52_UAV _D escent_Avionics_SW

Softw are fai lures
during descent are

mitigated

G OAL

Is solved by

Is solved by

E18_UAV_Descent_Avionics_SW_Autopilot _FMS

Proof of
correctness of

FMS c lass us ing
AutoCert

SO LU TION

G 45_UA V_Descent_Avionics_SW _A utopilot_AP

PID control ler updates are

correc t for each airc raft
controller

G OAL

G2_UAV

Airborne
system

(SWIFT UAV)
is safe

GO AL

Is solved by

G 46_UA V_Descent_Avionics_SW _S ervo

Servo Interface module is
correc t

G OAL

G67_UAV_Descent

Failure hazards during
D escent phase are

mitigated
GO AL

G44_UAV_Descent_Avionics_SW_Autopilot_AP

PID contr ol ler objec ts
properly initial ized

G OAL

N22218651

[High-level functional
safety requirement A1]:

The autopilot shall
interpret al l commands

cor rec tlyCO NTEXT

In context of

C76_Top

Spec ified
configuration

C ON TEXT

G10_UAV _D escent_Pr opulsion

Propuls ion fai lure hazard
during descent is mitigated

GO AL

C53_UAV_Descent

UAV Architecture
CO NTEXT

G1

SWIFT UAS is safe

G OAL

Is solved by

In context of

G33_UAV_Descent_Avionics

Avionics failure hazard
dur ing descent is

mitigated

GO AL

Is solved by

G9_UAV_Descent_Avionics_SW_Autopilot

AP c lass is corr ec tly
implemented

GO AL

A

N29177946
R equirements for

Autopilot module
are correct and

complete
ASSUMPTION

N29396385

R equirement [LL-SR -002]:
The autopilot module shall

cor rec tly compute the
elevator control variable

CO NTEXT

G 4_C ommunication

S WIFT UAS
Communication

Infras truc ture is safe
GO AL

Is solved by

N29615545

AP c lass des ign
documentation

CO NTEXT

C4_UAV

Identified hazards and
hazard categories during

S wift U AV H azard analysis
C ONTE XT

G 29_UA V_Descent_Avionics_SW _A utopilot_autopilot

FMS objec t properly
initial ized

G OAL

S3_UAV_Descent

Argument over al l
identified SWIFT UAV

subsystem fai lure
hazards

STRATEG Y

Is solved by

In context of

Is solved by

Is solved by

N3259575

Argument of correc t
implementation of
all c lasses of the
Autopilot module

STRATEG Y

Is solved by

G31_UAV_Descent_Avionics_Modules

SWIFT U AV Av ionics software
modules and commands

are cor rect

G OAL

A

A4_UAV_Descent

All fai lure hazards during
descent have been identified

completely and correctly

ASS UMPTIO N
In context of

G25_UAV_Descent_Actuation

Actuators do not coll ide with
or interfere w ith exis ting

s truc tur es

G OAL

Is solved by

S10_UAV_Descent_Avionics_S of twar e

Argument by satisfac tion of
functional safety

requirements on Avionics
software dur ing descent

S TR ATEGY

Is solved by

G 16_UA V_Descent_Avionics_SW _A ut opilot_autopilot
autopilot des ign is

correct
GO AL

N39596683

Implementation of PID contr ol ler
is correc t for Ailer on control

var iable (i .e.
output->m_ailer on_m1p1 has

property
has_unit(output->m_aileron_m1p1,GO AL

Is solved by

G6_UAV

Hazards aris ing from the
operating env ironment of
SWIFT U AV are mitigated

G OAL

C3_U AV_Avionics_Softw are

R eflec tion System
Execution Layer

CO NTEXT

G8_UA V_Descent_Avionics_Reflection

Reflection virtual
machine i corr ec t

GOAL
N42769945

Argument over al l

functional safety
requirements

applicable to avionicsS TR ATEGY

Is solved by

Is solved by

N42862332

Implementation of PID
C ontrol ler updates for each

control surface is correc t

G OAL

G 8_U AV_TakeO ff
Failur e hazards
during Take-O ff

phase are
mitigated

GO AL

A

A46_U AV_Descent

FMEA and FTA have
completely and correc tly

identified subsystem
failure hazard causes

ASSUMPTION

In context of

In contex t of

G63_UAV_Cr uise
Failure hazards

during C ruise
phase are
mitigated

G OAL

G104_U AV_Descent_A vionics_SW _AP

Implementation of AP modes and
state vartiables update by FMS is

correct
GOAL

N 44395065

Autopilot contr ol
theor y

CON TEXT

G62_UAV_Sur vey

G OAL

G8_UAV

Interaction hazards

G OAL

C57_Top
Weather conditions

C ON TEXT

In context of

G14_UAV _D escent_Avionic_Softw are

Software specification
for SWIFT UAV Av ionics

is correct

G OAL

Is solved by

G 6_UA V_Descent_Avionics_SW _Autopilot_autopilot

autopilot class is
correc tly implemented

G OAL

Is solved by

G 67_UA V_ReturnCruise

G OAL

G18_UAV_Descen_Avionics_S oftwar e

Avionics softw ar e satis ties
functional safety requirements

applicable during descent

G OAL

Is solved by

Is solved by

C5_UAV

D efinition of
acceptable r isk and

risk categories
C ON TEXT

N51570088

[High level functional safety
requir ement A2]: The

autopilot shall execute safe
maneuvers for al l commands

CO NTEXT

In contex t of

N5207777
Implementation of PID
control ler is cor rect for

E levator contr ol variable
(i.e.

output->m_elevator_m1p1
has pr operty

GOAL

In contex t of

Is solved by

N52878010

Ar gument over
breakdow n of AP

functionality

STRATEG Y

Is solved by

Is solved by

In contex t of

Is solved by

N54946405

Autopilot class des ign
documentation

CON TEXT

C6_UA V_Avionics_S oftwar e

Reflection sys tem
components

CON TEXT

N 55989331

Variables representing
each control surface

CO NTEXT

G27_UAV_Descent_Avionics_SW_Autopilot_autopilot

Aircraft s tate

information properly
received from sensors

GO AL

N 5831891

R equirement [LL-S R-001]: The
autopilot module shall

correctly compute the ai leron

control variable
CO NTEXT

In contex t of

N58548868

Ar gument over each
control surface

STR ATEGY

Is solved by Is solved by

In contex t of

Is solved by

G2_U AV_Descent_Actuat ion

Actuation fai lure hazard
during descent is mitigated

G OAL

Is solved by

Is solved by

G10_UAV_Descent_Avionics_SW_Autopilot_FMS

FMS class is correctly
implemented

GOAL

Is solved by

Is solved by

C20_U AV_Descent

FTA and FMEA of

SWIFT U AV during
descent

CO NTEXT

In contex t of

In context of

N59283531

Argument of correc t
des ign of Autopilot

module over al l

sub-modules
STRATEG Y

Is solved byIs solved byIs solved by

In context of

G37_UAV_Descent_Stuctures

G OAL

Is solved by

C32_UAV _Avionics_S of twar e
S WIFT UAV softw are

ar chitecture
CO NTEXT

G30_UAV_Descent_Avionics_SW_Autopilot_autopilot

AP object properly
initial ized

GO AL

Is solved by

G44_U AV_Descent _A vionics_S W_Modem

Modem interface is correc t

G OAL

N64187980

AP class code and identified
code blocks within AP c lass

C ON TEXT

N662857
Autopilot module

design
C ONTEXT

In contex t of

N66549438
Hazard analys is of UAV
software and software

fai luresC ON TEXTIn context of

N66654229

Autopilot O bjec t
code

C ON TE XT

In context of

In contex t of

G3_GS

SWIFT G round
stations are

safe
G OAL

Is solved by

N68919176

Argument over
breakdown of

autopilot functionality
STR ATE GY

Is solved by

In context of

Is solved by

Is solved by

Is solved by

G 7_UA V

S WIFT UAV failure
hazards are mitigated

G OAL

S 2_U AV
Argument of

hazard mitigation

over al l identified
SWIFT UAV

hazar ds
STR ATEGY

In context of

Is solved by Is solved by

In context of

Is solved by

Is solved by

A

N71310693

C ommand for landing
is given and
recognized

ASSU MPTION

In context of

G75_UAV_Descent_Avionics_SW_Autopilot_A P

Implementation of proper
initial ization of PID control ler

objec ts is correc t

G OAL

N72373348
Argument over

correct
implementation of

code blocks
STRATEG Y

Is solved by

Is solved by

In contex t of

Is solved by

Is solved by

N74379313

SWIFT U AV System
R equirements

CO NTEXT

G41_UAV _D escent_Avionics_SW_Autopilot_AP

AP modes and s tate variables
correc tly updated by FMS

G OAL

Is solved by

G 9_U AV_Climb

Failure hazards

during C limb phase
are mitigated

GO AL

N76400477
D efinition of
correc tness

C ON TEXT

G28_UAV _Descent_Avionics_SW_A ut opilot_autopilot

Current, previous and
next w aypoints properly

defined
G OAL

Is solved by

C6_Top

Range (Location and
Site) of operation

CO NTEXT

In context of

G 34_UA V_Descent_Avionics_Scr ipts

SWIFT U AV S oftw ar e
scripts are correc t

GO AL

G43_UAV _D escent_Avionics_SW_Autopilot

Autopilot module is correc t

GOAL

In contex t of

Is solved by

Is solved by

In context of

G5_O per ation

S WIFT UAS subsystem
interactions are safe

G OAL

Is solved by

N84061307

[High-level functional
safety requirement A3]:

The autopilot shall
maintain accurate state

information
C ON TEXT

C3_UAV

D efinition of hazard
from MIL-STD-882D

C ON TE XT
In contex t of

G22_UAV_Descent_Avionics_WinXP

Windows XP
Embedded OS

behaves correc tly

GO AL

C75_Top

Specified Miss ion
CO NTEXT

In contex t of

G92_U AV_Descent _A vionics_SW _Autopilot

G OAL

G45_UAV _D escent_Avionics_SW_GS

G round s tation interface
module is cor rect

GO AL

G24_UAV _Descent_Actuation

Readiness of ac tuators for
use confirmed thr ough

pre-fl ight inspection
G OAL

Is solved by

Is solved by

S30_UAV _D escent_Avionics_Softw are

Argument over al l SWIFT
U AV avionics modules and

commands

STR ATE GY

Is solved by

In context of

Is solved by

Is solved by

Is solved by

Is solved by

N90978783

Definition of
correc tness

C ONTE XT

In contex t of

N91338325
Identified av ionics

softw are functional safety
r equirements

CO NTEXT

In contex t of

C2_Top

SWIFT U AS Des ign
Management Plan

and D es ign
Documentation

C ONTEXT

In context of

N92654598

Argument that
Autopilot module

satis fies higher level
r equirements

STR ATE GY

Is solved by

Is solved by

S 1_U AV_Descent_A vionics_Soft ware

C or rectness
argument over all

softw are
execution layers
and components

STR ATEGY

Is solved by

Is solved by

In contex t of

Is solved by

In contex t of

In contex t of

Is solved byIs solved by

Is solved by

C64_UAV _D escent
Identified hazards
during descent in

SWIFT U AV hazard
analys isCO NTEXT

In context of

J

N95126301

Definition of
software

failure

JU STIFIC ATIO N

In context of

E15_UAV_Descent_Avionics_SW_Autopilot _autopilot

Proof of
cor rec tness
of autopilot

SO LUTION

Is solved by

C70_UAV_Descent_Avionics_Softw ar e
D efinition of functional

safety requirement
C ON TEXT

In contex t of

N97706610

SWIFT U AV Software
Requirements

C ON TE XT
In context of

S1_UAV

Argument over al l
known U AV fai lure

hazards acr oss al l
oper ating phases

STRATEG Y

In context of

Is solved by

Is solved by Is solved by
Is solved by

Is solved by

Is solved by

Is solved by

G.Domain10

Domain Theory

inc ludes: arithmetic,
transformation

geometry, l inear
algebra.

MO DEL

In context of

G .D omain20

Domain Theory
includes: arithmetic ,

transformation
geometry , l inear

algebra.
MOD EL

In context of

N99537581

Low level functional safety
requirement: The autopilot
shall correctly compute the

actuator outputs
CO NTEXT

In contex t of

N 11024219
The autopilot maintains

accurate s tate information
during descent

GO AL

In context of

Is solved by

SP .D Var12650M1L2

calc_error

MO DEL

In context of

G.VCDV ar 126510160L4

ap_frame_007_0010 is proven

GO AL

GS .V CDVarp126510160L4

Pr ove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over 126510160L4

Prover: SSCP A---0.0

MO DEL

In contex t of

GS P.VCDVar p126510160L4

Proof:
ap_frame_007_0010.proof

SOLU TIO N

Is solved by

G .V CDVar126510161L4

ap_frame_007_0011 is proven

G OAL

GS.VCDV arp126510161L4

Prove us ing Automated
Theor em Pr overs

STR ATEGY

Is solved by

GS.Prover126510161L4

Prover: SS CPA---0.0

MOD EL

In context of

GSP.VCD Varp126510161L4

Proof:
ap_frame_007_0011.proof

SO LUTION

Is solved by

G.VCD Var126510162L4

ap_frame_007_0012 is proven

GO AL

G S.V CDVarp126510162L4

P rove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS .P rover 126510162L4

Prover: SSC PA---0.0

MO DEL

In contex t of

G SP.VCDVar p126510162L4

Proof:
ap_fr ame_007_0012.proof

SOLU TIO N

Is solved by

G.VCDVar126510163L4

ap_fr ame_007_0013 is proven

G OAL

GS.VCD Varp126510163L4

Prove us ing Automated
Theorem Pr overs

STR ATEGY

Is solved by

GS.Prover126510163L4

Pr over: S SCPA---0.0

MOD EL

In context of

GSP.VC DVarp126510163L4

Proof:
ap_frame_007_0013.proof

SO LUTION

Is solved by

G.VCD Var126510164L4

ap_frame_011_0024 is pr oven

GO AL

G S.VCDVar p126510164L4

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

GS .P rover 126510164L4

Prover: SSC PA---0.0

MO DE L

In context of

GSP.VCDV ar p126510164L4

Proof:
ap_frame_011_0024.pr oof

SOLU TIO N

Is solved by

G.VCDVar 126510165L4

ap_frame_011_0025 is proven

G OAL

GS.VC DVarp126510165L4

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS.Pr over126510165L4

P rover: SSCPA-- -0.0

MOD EL

In context of

GSP .V CDVarp126510165L4

P roof:
ap_frame_011_0025.proof

S OLUTION

Is solved by

G.VC DVar126510166L4

ap_frame_011_0026 is proven

GO AL

GS.VCDVar p126510166L4

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

G S.Prover 126510166L4

Prover: SSC PA---0.0

MODE L

In context of

GSP.VCDV arp126510166L4

Proof:
ap_frame_011_0026.proof

SO LU TION

Is solved by

G.VCDVar 126510167L4

ap_frame_011_0027 is proven

GOAL

GS.VC DVarp126510167L4

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS.Pr over126510167L4

Prover: SSCP A- --0.0

MO DEL

In contex t of

GS P.VCDVarp126510167L4

P roof:
ap_frame_011_0027.proof

SOLUTIO N

Is solved by

G .VC DVar126510168L4

ap_frame_011_0028 is proven

G OAL

GS.VCDV ar p126510168L4

Prove us ing Automated
Theorem Provers

STR ATE GY

Is solved by

GS.Prover126510168L4

Prover : SS CPA---0.0

MOD EL

In context of

GSP.VCD Varp126510168L4

Proof:
ap_frame_011_0028.proof

SO LUTION

Is solved by

G.VCDV ar 126510169L4

ap_frame_011_0029 is proven

GO AL

GS .V CDVarp126510169L4

Pr ove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Pr over 126510169L4

Prover: SSCP A---0.0

MO DEL

In contex t of

G SP.VCDVar p126510169L4

Proof:
ap_frame_011_0029.proof

SOLU TIO N

Is solved by

G .V CDVar1265101610L4

ap_frame_011_0030 is proven

G OAL

GS.VCDV arp1265101610L4

Prove us ing Automated
Theor em Pr overs

STR ATEGY

Is solved by

GS.Pr over1265101610L4

Prover: SS CPA---0.0

MOD EL

In context of

GSP.VCD Varp1265101610L4

Proof:
ap_frame_011_0030.proof

SO LUTION

Is solved by

G.VCD Var1265101611L4

ap_frame_011_0031 is proven

GO AL

G S.VCDVarp1265101611L4

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

G S.Prover 1265101611L4

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP.VCDV arp1265101611L4

Proof:
ap_frame_011_0031.proof

SOLU TIO N

Is solved by

G.VCDVar 12651010L3

ap_frame_011_0026 is proven

G OAL

GS.VC DVarp12651010L3

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS .P rover 12651010L3

Prover: SSC PA---0.0

MO DEL

In context of

GSP.VC DVarp12651010L3

P roof:
ap_frame_011_0026.proof

S OLUTION

Is solved by

G.VC DVar12651011L3

ap_frame_011_0027 is proven

GO AL

GS.VCDVar p12651011L3

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Prover12651011L3

Prover: SS CPA---0.0

MOD EL

In context of

GSP.VCD Varp12651011L3

Proof:
ap_frame_011_0027.proof

SO LU TION

Is solved by

G.VCDVar 12651012L3

ap_frame_011_0028 is proven

GOAL

GS.VC DVarp12651012L3

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

G S.P rover 12651012L3

Prover: SSC PA---0.0

MO DEL

In context of

GSP .V CDVarp12651012L3

P roof:
ap_frame_011_0028.proof

SOLUTIO N

Is solved by

G .VC DVar12651013L3

ap_frame_011_0029 is proven

G OAL

GS.VCDV ar p12651013L3

Prove us ing Automated
Theorem Provers

STR ATE GY

Is solved by

GS.Pr over12651013L3

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCDV ar p12651013L3

Proof:
ap_frame_011_0029.proof

SO LUTION

Is solved by

G.VCDV ar 12651014L3

ap_frame_011_0030 is proven

GO AL

GS .V CDVarp12651014L3

Pr ove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

G S.Prover12651014L3

Prover: SSC PA---0.0

MODE L

In contex t of

GSP .V CDVarp12651014L3

Proof:
ap_frame_011_0030.proof

SOLU TIO N

Is solved by

G .V CDVar12651015L3

ap_frame_011_0031 is proven

G OAL

GS.VCDV arp12651015L3

Prove us ing Automated
Theor em Pr overs

STR ATEGY

Is solved by

GS.Pr over12651015L3

P rover: SSCP A-- -0.0

MO DEL

In context of

GSP.VCD Varp12651015L3

Proof:
ap_frame_011_0031.proof

SO LUTION

Is solved by

GS .P rover 12659L2

Prover: SSC PA---0.0

MOD EL

In contex t of

G.VCDVar 1265108L3

ap_frame_011_0024 is proven

GOAL

GS .V CDVarp1265108L3

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS .P rover 1265108L3

Prover: SSC PA---0.0

MO DE L

In contex t of

GSP .V CDVarp1265108L3

P roof:
ap_frame_011_0024.proof

SOLU TIO N

Is solved by

G .V CDVar1265109L3

ap_frame_011_0025 is proven

G OAL

GS.VCDV ar p1265109L3

Prove us ing Automated
Theor em Provers

STR ATE GY

Is solved by

GS.Prover1265109L3

P rover: S SCPA--- 0.0

MOD EL

In context of

GSP.VCD Varp1265109L3

Proof:
ap_frame_011_0025.proof

SO LUTION

Is solved by

G.DV ar 12651016120L5

m_pidTar gets->m_cur rentXTrackErr
has property

has_unit(m_pidTargets->m_currentXTrackErr,
error(x track))

 es tablished at l ine 276 of

/home/jmpohl/new _examples /autopilot/second_try /ap.cppGO AL

S.DVar12651016120L5

Correc tness of the
computation at l ine

272 to line 273

STR ATEG Y

Is solved by

SP.DV ar 12651016120M1L5

crosstrack_error

MOD EL

In context of

G.VCDVar 12651016120L5

ap_frame_011_0016 is proven

G OAL

Is solved by

GS.VC DVarp12651016120L5

Prove us ing Automated
Theorem Provers

S TRATEGY

Is solved by

GS.Pr over12651016120L5

P rover: SSCPA-- -0.0

MO DEL

In context of

G.VC DVar12651016121L5

ap_fr ame_011_0023 is proven

GO AL

Is solved by

GS.VCDVar p12651016121L5

Prove us ing Automated
Theorem Prover s

STR ATEG Y

Is solved by

GS.Prover12651016121L5

Prover: SSC PA---0.0

MOD EL

In context of

G.VCDVar 12651016122L5

ap_frame_011_0033 is proven

GOAL

Is solved by

GS .V CDVarp12651016122L5

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS.Pr over 12651016122L5

Prover: SSCP A- --0.0

MO DEL

In context of

G .V CDVar12651016123L5

ap_frame_011_0034 is proven

G OAL

Is solved by

GS.VCDV ar p12651016123L5

Prove us ing Automated
Theor em Provers

STR ATE GY

Is solved by

GS.Prover12651016123L5

Prover : SS CPA---0.0

MOD EL

In contex t of

G.VCDV ar12651016124L5

ap_frame_011_0036 is proven

GO AL

Is solved by

G S.V CDVarp12651016124L5

P rove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS .P rover 12651016124L5

Prover: SSC PA---0.0

MO DEL

In context of

G.DVar126510161250L6

currAC Pos has property
has_unit(cur rACPos, pos(ne))

G OAL

Is solved by

G.DVar126510161251L6

srcWpP os has property
has_unit(s rcWpPos, pos(ne))

has_unit(s rcWpPos, pos(ne))

G OAL

Is solved by

G.DVar 126510161252L6

dstWpPos has property
has_unit(ds tWpPos, pos(ne))

has_unit(ds tWpPos, pos(ne))

GO AL

Is solved by

GS P.VCDVarp12651016120L5

P roof:
ap_fr ame_011_0016.proof

S OLUTIO N

Is solved by

GSP.VCD Varp12651016121L5

Proof:
ap_frame_011_0023.proof

SO LUTION

Is solved by

G SP.VCDVar p12651016122L5

P roof:
ap_frame_011_0033.proof

SOLU TIO N

Is solved by

GSP.VC DVarp12651016123L5

Proof:
ap_frame_011_0034.proof

SO LUTION

Is solved by

G SP.VCDVar p12651016124L5

Proof:
ap_frame_011_0036.proof

SOLU TIO N

Is solved by

G.DVar1265101L3

m_pidTargets->m_des iredheading_rad
has proper ty

has_unit(m_pidTargets->m_des iredheading_rad,
desired(heading))

 es tablished at l ine 407 of
/home/jmpohl/new_examples /autopilot/second_try/ap.cppGOAL

Is solved by

S.DV ar 1265101L3

C orrectness of the
computation at l ine

283

STRATEGY

Is solved by Is solved by Is solved by Is solved by Is solved by Is solved by Is solved by Is solved by

Is solved by

SP.DVar1265101M1L3

des ired_heading

MODE L

In context of

G.DVar126510160L4

m_pidTargets->m_xtracks ignal_deltaHeading
has property

has_unit(m_pidTargets->m_xtracks ignal_deltaH eading,
des ired(delta(heading)))

 es tablished at l ine 283 of
/home/jmpohl/new_examples /autopilot/second_try/ap.cpp

GOAL

Is solved by

S.DVar 126510160L4

C orrectness of the
computation at l ine

276 to l ine 277

STRATEGY

Is solved by Is solved by Is solved by Is solved by Is solved by Is solved by Is solved by Is solved by
Is solved by Is solved by Is solved by Is solved by

Is solved by

Is solved by

S P.DVar126510160M1L4

crosstrack_deltaheading

MO DEL

In contex t of

G.VCD Var1265101L3

ap_frame_006_0007 is proven

GO AL

Is solved by

GS.VCDVar p1265101L3

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Prover1265101L3

Prover: SS CPA---0.0

MOD EL

In context of

G SP.VCDVar p1265101L3

Proof:
ap_frame_006_0007.proof

SO LU TION

Is solved by

G.VCDVar 1265102L3

ap_frame_006_0008 is proven

G OAL

Is solved by

GS.VC DVarp1265102L3

Prove us ing Automated
Theorem Provers

S TRATEGY

Is solved by

GS.Pr over 1265102L3

Prover: SSC PA---0.0

MO DEL

In contex t of

GSP .V CDVarp1265102L3

P roof:
ap_frame_006_0008.proof

S OLUTIO N

Is solved by

G.VC DVar1265103L3

ap_frame_006_0009 is proven

GO AL

Is solved by

GS.VCDVar p1265103L3

Prove us ing Automated
Theorem Prover s

STR ATEG Y

Is solved by

GS.Prover1265103L3

Pr over: S SCPA---0.0

MOD EL

In context of

GSP.VCDV ar p1265103L3

Proof:
ap_frame_006_0009.proof

SO LUTION

Is solved by

G.VCDVar 1265104L3

ap_frame_007_0010 is proven

GOAL

Is solved by

GS .V CDVarp1265104L3

Prove us ing Automated
Theorem Provers

STRATEGY

Is solved by

GS .P rover 1265104L3

Prover: SSC PA---0.0

MO DE L

In contex t of

GSP .V CDVarp1265104L3

Proof:
ap_frame_007_0010.proof

SOLU TIO N

Is solved by

G .V CDVar1265105L3

ap_frame_007_0011 is proven

G OAL

Is solved by

GS.VCDV ar p1265105L3

Prove us ing Automated
Theor em Provers

STR ATE GY

Is solved by

GS.Prover1265105L3

P rover: SSCPA-- -0.0

MOD EL

In context of

GSP.VCD Varp1265105L3

Proof:
ap_frame_007_0011.proof

SO LUTION

Is solved by

G.VCDV ar1265106L3

ap_frame_007_0012 is proven

GO AL

Is solved by

G S.V CDVarp1265106L3

P rove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

G S.P rover 1265106L3

Prover: SSC PA---0.0

MODE L

In contex t of

GS P.VCDVar p1265106L3

Proof:
ap_frame_007_0012.proof

SOLU TIO N

Is solved by

G.VCDVar1265107L3

ap_frame_007_0013 is proven

G OAL

Is solved by

GS.VCD Varp1265107L3

Prove us ing Automated
Theorem Pr overs

STR ATEGY

Is solved by

GS.Pr over1265107L3

Prover: SSCP A- --0.0

MO DEL

In context of

GSP.VCD Varp1265107L3

Proof:
ap_frame_007_0013.proof

SO LUTION

Is solved by

G .D Var1265101613L4

m_pidTargets- >m_des iredheading_rad2

has property
has_unit(m_pidTargets->m_desiredheading_rad2,

initial(heading))
 es tablished at l ine 283 of

/home/jmpohl/new _examples/autopilot/second_try /ap.cppG OAL

Is solved by

S.DVar1265101613L4

C or rec tness of the
computation at line

260 to l ine 268

STR ATEGY

Is solved by

SP .D Var1265101613M1L4

initial_heading

MOD EL

In context of

G.VCD Var1265101613L4

ap_frame_010_0014 is proven

GO AL

Is solved by

G S.VCDVarp1265101613L4

P rove using Automated
Theorem Provers

STRATEG Y

Is solved by

G S.Prover 1265101613L4

Prover: SSC PA---0.0

MO DEL

In contex t of

G SP.VCDVar p1265101613L4

Proof:
ap_fr ame_010_0014.proof

SOLU TIO N

Is solved by

G.VCDVar1265101614L4

ap_fr ame_010_0015 is proven

G OAL

Is solved by

GS.VCD Varp1265101614L4

Prove us ing Automated
Theorem P rovers

S TR ATEGY

Is solved by

GS.Pr over1265101614L4

Pr over: S SCPA---0.0

MOD EL

In context of

GSP.VC DVarp1265101614L4

Proof:
ap_frame_010_0015.proof

S OLUTION

Is solved by

G.VCD Var1265101615L4

ap_frame_011_0022 is pr oven

GO AL

Is solved by

GS.VCDVar p1265101615L4

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Prover1265101615L4

Prover: SSC PA---0.0

MO DE L

In contex t of

G SP.VCDVar p1265101615L4

Proof:
ap_frame_011_0022.pr oof

SO LU TION

Is solved by

G.VCDVar 1265101616L4

ap_frame_011_0032 is proven

G OAL

Is solved by

GS.VC DVarp1265101616L4

Prove us ing Automated
Theorem Provers

S TRATEGY

Is solved by

GS.Pr over 1265101616L4

P rover: SSCPA-- -0.0

MOD EL

In context of

GSP .V CDVarp1265101616L4

P roof:
ap_frame_011_0032.proof

S OLUTIO N

Is solved by

G.VC DVar1265101617L4

ap_frame_011_0035 is proven

GO AL

Is solved by

GS.VCDVar p1265101617L4

Prove us ing Automated
Theorem Provers

STRATEG Y

Is solved by

GS.Prover1265101617L4

Prover: SSC PA---0.0

MODE L

In contex t of

GSP.VCDV ar p1265101617L4

Proof:
ap_frame_011_0035.proof

SO LU TION

Is solved by

G.DVar12651016180L5

srcWpPos has property
has_unit(s rcWpPos, pos(ne))

has_unit(s rcWpPos, pos(ne))

GO AL

Is solved by

G .D Var12651016181L5

dstWpPos has pr operty
has_unit(ds tWpPos, pos(ne))

has_unit(ds tWpPos, pos(ne))

G OAL

Manually created safety case fragment

Automatically generated safety case fragment

Figure 11. Safety case fragment of the airborne system in the Swift UAS: bird’s eye view.

structure in layers, i.e., we first develop the top-level safety
claim into claims about the mitigation of UAV hazards
during its phases of operation, e.g., UAV failure hazards
during descent, and then further develop this into claims
linking

(a) the UAV sub-systems and the avionics software
(b) the avionics software and the autopilot module
(c) the autopilot module and the autopilot controller (AP)
(d) the AP module and the PID controller for the aileron.
The argument fragment which justifies the claims at this

last level is then automatically generated. Figure 12 shows
an excerpt from the manually created safety case fragment
(highlighted in Figure 11). In particular, it shows how
the claim of mitigating software failures during descent is
broken down by using the strategy of making correctness

arguments, into the claims that (1) the avionics software
modules and commands are correct, and (2) the autopilot
module is correct.

Arguing correctness is not always required when making
a safety claim. However, in our case the correctness of
the avionics software is related to functional safety, i.e.,
incorrect behavior is unsafe behavior. This justification is
explicit in the argument fragment through the definition of
correctness of the software components. In the particular
case of the failsafe autopilot (which is part of the avionics
software and also forms a part of the Swift UAS CMS), its
correct behavior is required to assure safety.

Figure 12 also shows how the claim of mitigating avionics
software failures during descent is linked to an identified
high-level functional safety requirement (Table I), i.e., “the

S9_UAV_Descent_Avionics_Software

Argument that
Avionics software
specification for

descent is correct

STRATEGY

S1_UAV_Descent_Avionics_Software

Correctness
argument over all

software
execution layers
and components

STRATEGY

S10_UAV_Descent_Avionics_Software

Argument by satisfaction of
functional safety

requirements on Avionics
software during descent

STRATEGY

N66549438

Hazard analysis of UAV
software and software

failures
CONTEXT

In context of

C70_UAV_Descent_Avionics_Software

Definition of functional
safety requirement

CONTEXT

In context of

G31_UAV_Descent_Avionics_Modules

SWIFT UAV Avionics software
modules and commands

are correct

GOAL

Is solved by

C6_UAV_Avionics_Software

Reflection system
components

CONTEXTIn context of

C3_UAV_Avionics_Software

Reflection System
Execution Layer

CONTEXT

In context of

N76400477

Definition of
correctness

CONTEXT

In context of

G52_UAV_Descent_Avionics_SW

Software failures
during descent are

mitigated

GOAL

Is solved by

Is solved by

Is solved by

J

N95126301

Definition of
software
failure

JUSTIFICATION

In context of

G16_UAV_Descent_Avionics_SW_Autopilot_autopilot

autopilot design is correct

GOAL

C32_UAV_Avionics_Software

SWIFT UAV software
architecture

CONTEXT A

N29177946
Requirements for
Autopilot module
are correct and

complete
ASSUMPTION

S30_UAV_Descent_Avionics_Software

Argument over all SWIFT
UAV avionics modules and

commands

STRATEGY

In context of

Is solved by

N59283531

Argument of correct
design of Autopilot

module over all
sub-modules

STRATEGY

Is solved by

N97706610

SWIFT UAV Software
Requirements

CONTEXT

N3259575

Argument of correct
implementation of all

classes of the Autopilot
module

STRATEGY

N66654229

Autopilot Object
code

CONTEXT

In context of

In context of

N92654598
Argument that

Autopilot module
satisfies higher level

requirementsSTRATEGY

G9_UAV_Descent_Avionics_SW_Autopilot

AP class is correctly
implemented

GOAL

Is solved by

G92_UAV_Descent_Avionics_SW_Autopilot

GOAL
Is solved byG23_UAV_Descent_Avionics_SW_Autopilot_AP

AP design is correct

GOAL

Is solved by

N44395065

Autopilot control
theory

CONTEXT

In context of

N662857

Autopilot module
design

CONTEXT

In context of

G43_UAV_Descent_Avionics_SW_Autopilot

Autopilot module is correct

GOAL

In context of

Is solved by

Is solved by

Is solved by

In context of

Is solved by

N74379313

SWIFT UAV System
Requirements

CONTEXT

In context of

N90978783

Definition of
correctness

CONTEXT

In context of

G18_UAV_Descen_Avionics_Software

Avionics software satisties
functional safety requirements

applicable during descent

GOAL

Is solved by
N42769945

Argument over all functional
safety requirements

applicable to avionics
software during descent

STRATEGY

Is solved by

N19965398

The autopilot executes safe
maneuvers for all commands during

descent
GOAL

Is solved by

Is solved by

G14_UAV_Descent_Avionics_Software

Software specification for SWIFT UAV
Avionics is correct

GOAL

Is solved by

Figure 12. Excerpt from the manually created safety case fragment.

autopilot executes safe maneuvers for all commands during
descent”. For this work, we have further developed the
claim that the AP module (class) is correctly implemented.
Subsequently, arguing this claim amounts to arguing that
the implementation of the PID controller for each control
surface is correct. Here, we are concerned with the correct
controller updates for the aileron. From this point forward,
the safety argument is automatically generated.

2) Automatically Generated Safety Argument: We auto-
matically create the safety case fragments using the ver-
ification information generated by AUTOCERT. Figure 13
shows an example of such auto-generated content relating
to the proof for the requirement on the m_aileron_m1p1
variable. The schema aileron_out is the context for
correctness, and this is verified by proving a number of
theorems (only the proof status of the first is shown here)
with the specified prover.

The evidence node denotes that a proof was found,
but the details of the proof are omitted. We also see a
portion of the chain of dependent variables: specifically the
dependency of the correctness of m_aileron_m1p1 on
the correctness of rollError_rad and the correctness
of m_desiredroll_rad. Each variable links to its own
verification information. Finally, Figure 13 shows the inclu-
sion of a context node describing the domain theory that
was used. The resulting automatically generated safety case

gives the complete argument for verification of the software
components.

Once the automatically generated safety case fragment
is created, it must be merged with the manually created
fragment described earlier. To do this, we use unique identi-
fiers and associate the top-level goals in the auto-generated
safety case, with the incomplete goals from the manually
created fragment, i.e., for each top level requirement from
the AUTOCERT verification, we match nodes in the auto-
generated fragment with nodes in the manually created frag-
ment via the identifier. In the case of the autopilot software,
we verify two requirements (shown to be descending from
the manually created fragment, in Figure 11).

To complete the argument started in the manually created
safety case, we graft the two auto-generated argument trees
onto the appropriate, manually created nodes.

V. RELATED WORK

Systematic approaches to develop safety arguments in
general [13], [7], and specifically for software [14], are based
on goals-based argumentation frameworks; they indicate the
role of safety processes and evidence selection in creating
the system and/or software safety case. Higher order logic
PVS has been applied to formalize a top-level safety argu-
ment to support mechanized checking, e.g., of soundness, of
the argument in [15], whereas [16] applies classical logic to

G.DVar120L0
rollError_rad has property

has_unit(rollError_rad,
error(roll))

[>]

GOAL

G.DVar1260L1
airplaneData->m_roll_rad has

property
has_unit(airplaneData->m_roll_rad,

current(roll))

[>]

GOAL

G.DVar1261L1

m_pidTargets->m_desiredroll_rad
has property

has_unit(m_pidTargets->m_desiredroll_rad,
desired(roll))

[>]

GOAL

G.Domain10

Domain Theory
includes: arithmetic,

transformation
geometry, linear

algebra.

[>]

MODEL

G.VC11

ap_frame_003_0002 is proven

[>]

GOAL

GS.VC11
Prove using Automated

Theorem Provers

[>]

STRATEGY

Is solved by

GS.VCProver11

Prover:
SSCPA---0.0

[>]

MODEL

In context of

GSP.VC11

Proof:
ap_frame_003_0002proof

[>]

SOLUTION

Is solved by

N39596683

Implementation of PID controller is
correct for aileron control variable
(i.e. output->m_aileron_m1p1 has

property
has_unit(output->m_aileron_m1p1,

desired(aileron))

[>]

GOAL

In context of

N5831891

Requirement [LL-SR-001]: The
autopilot module shall

correctly compute the aileron
control variable

[>]

CONTEXT

In context of

S.DVar120L0
Correctness of the
computation at line

 538

[>]

STRATEGY

Is solved by
Is solved by

Is solved by
SP.DVar120M1L0

calc_error:
calculate error

in roll

[>]

MODEL

In context of

SP10
Show correctness of
the computation at

line 542

[>]

STRATEGY

Is solved byIs solved by

Is solved by

SP10M0

aileron_out: convert roll
error in rollError_rad to

desired aileron in
output ->

m_aileron_m1p1

[>]

MODEL

In context of

Figure 13. Excerpt from the auto-generated fragment.

derive safety cases using formal methods in model-based
development. Formal methods have been also applied in
other incarnations of goal-based argumentation, so-called
assurance cases [17], and dependability cases [18]. In [19],
an approach for identifying assurance deficits in safety argu-
ments with a view towards improving their trustworthiness is
given. Along these lines, the role of diversity and uncertainty
in dependability/safety cases has been addressed in [20] and
[21], [22] respectively.

Four aspects of our work distinguish it from the existing
literature:

(1) The safety argument that we have created (Figure 11)
provides a level of detail going well beyond the state of the
practice. Safety cases typically leave many details implicit
or informal, and rarely go down to the level of software
implementations. Making safety-relevant data and its con-
nections to requirements explicit is highly worthwhile since
a safety case serves primarily as a form of communication.

(2) Thus far, safety cases have not generally combined
manually developed and auto-generated fragments. Where
automation is used, it tends to be as a black box that provides
a single piece of evidence, and not a full argument fragment.
We have demonstrated the feasibility of automated assembly
of manually developed safety case fragments with those
generated automatically (in Section III-C).

(3) We have combined traditional safety analysis tech-
niques with formal methods (in Section III-B). Although
formal methods have been used in safety cases, much of the
existing work does not deal with the wider context of safety
or with argument generation.

(4) Safety is inherently heterogeneous; we have charac-
terized the diversity of the information sources pertinent to
safety (in Section III-A) and explicitly reflected it in the
argument fragments created, e.g., autopilot control theory

forms the context when arguing the validity of autopilot soft-
ware (Figure 12). Furthermore, we view “formal” and “non-
formal” sources not as opposites, but as complementary and
equally relevant. We have also highlighted how software
is considered in the system context with explicit justifica-
tion for the constituent parameters and specifications, when
viewed from a safety perspective (Figure 13).

VI. CONCLUDING REMARKS

We have shown that it is feasible to automatically assem-
ble auto-generated fragments of safety cases derived from a
formal verification method, i.e., proofs of correctness using
AUTOCERT, with manually created fragments derived from
safety analysis. We illustrated our approach describing an
end-to-end slice of the overall safety case for the Swift UAS.

Our intent, here, is primarily to show how heterogeneous
safety aspects, especially those arising from formal, and non-
formal reasoning, can be communicated in a unified way,
rather than to claim safety improvement. The comprehensive
safety case (the creation of which is ongoing) will include
arguments for the safety of the GCS, communications, and
operations, besides addressing other aspects of the airborne
system, i.e., other properties of the flight software, both
correctness and safety, carefully accounting for a greater
range of faults, modes and commands of the autopilot, and
carrying the analysis through all the execution layers.

For the argument fragment described here, as well as for
the comprehensive safety case, several additional aspects
are noteworthy. Firstly, how our safety argument is initially
structured, we believe, is likely to play an appreciable role
in its comprehensibility and complexity, e.g., one strategy to
develop the initial safety claim is to argue that the relevant
hazards across all operating phases of the UAS have been
managed. An alternative strategy is to develop the top-level
claim, first, into claims on the subsystems of the UAS, and
then across the relevant operating phases. The former allows
us to address, at the outset, those hazards which can change
risk categories depending on the mission phase, e.g., failure
of the nose wheel actuator may not be hazardous during
the cruise phase but it is during landing. Whereas, the latter
facilitates the creation of a safety argument which may be
both easier to maintain and better modularized.

Second, there is a need for a quantitative assessment
framework for the arguments created [23] to support de-
cision making, e.g., whether an argument is valid and/or
covers sufficient information. We have identified an initial
set of metrics that we believe will support this broad goal,
and Table II shows a subset thereof. Due to space constraints,
we do not report on their specification here. To illustrate
their role, however, consider COVH : this metric indicates
reasonably high (about 73%), but not complete, coverage
of the hazards considered, reflecting the fact that not all
claims arising from the hazards in the argument fragment
have been fully developed, i.e., terminate in evidence. In

Table II
QUANTITATIVE METRICS FOR FIGURE 11 (EXCERPT).

Measure Value Description
C 144 Total number of claims.
Hc 0.1428 Coverage of hazards identified.
COVH 0.7344 Coverage of considered hazards.
COVRHL

0.8667 Coverage of high-level safety requirements.

large safety cases, such metrics can conveniently summarize
the state of the safety argument during system evolution. An
implicit assumption underlying the coverage measures here
is that the argument chains in the safety case are themselves
valid. Thus, assessing argument validity, e.g., via quantitative
uncertainty assessment [22], and including this notion into
the earlier coverage measures, appears to be a promising
mechanism to support such decision making.

Third, the inclusion of auto-generated fragments, and all
relevant sources of information, will lead to increasingly
large safety cases. Since the primary motivation of a safety
case is to communicate safety relevant information to the
relevant stakeholders, we believe that a safety case should
be viewed not as a static, unchanging artifact, rather as
one amenable to manipulation in various automated ways,
e.g., by generating traceability matrices. We believe that this
will ameliorate the integration of safety cases into existing
process-based methodologies.

Finally, we believe that the work presented here is a
promising step towards increased safety assurance, partic-
ularly in UAS. Safety analysis is imperative to determine
the required regulations (and whether existing regulations
are sufficient and/or how they ought to be augmented):
[24] identifies several UAS hazards and their implications
for regulation, while [25] gives the properties for an ef-
fective framework for airworthiness certification for UAS.
Research on the generation of safety cases, thus affords the
development of a framework for assuring safety in tandem
with the identification of UAS-relevant hazards.

ACKNOWLEDGMENTS

This work was funded by NASA contract NNA10DE83C.

REFERENCES

[1] R. Bloomfield and P. Bishop, “Safety and assurance cases:
Past, present and possible future – an Adelard perspective,”
in Proc. 18th Safety-Critical Sys. Symp., Feb. 2010.

[2] International Organization for Standardization (ISO), “Road
Vehicles-Functional Safety,” ISO 26262 Draft Standard,
Baseline 15, 2010.

[3] K. Davis, “Unmanned Aircraft Systems Operations in the
U.S. National Airspace System,” Interim Operational Ap-
proval Guidance 08-01, FAA Unmanned Aircraft Systems
Program Office, Mar. 2008.

[4] UK Ministry of Defence (MoD), Safety Management Re-
quirements for Defence Systems, Defence Standard 00-56,
Issue 4, 2007.

[5] Federal Aviation Administration, System Safety Handbook,
FAA, Dec. 2000.

[6] Goal Structuring Notation Working Group, “GSN
Community Standard Version 1,” Nov. 2011. [Online].
Available: http://www.goalstructuringnotation.info/

[7] P. Bishop and R. Bloomfield, “A methodology for safety case
development,” in Proc. 6th Safety-critical Sys. Symp., 1998.

[8] E. Denney and S. Trac, “A software safety certification tool
for automatically generated guidance, navigation and control
code,” in IEEE Aerospace Conf. Electronic Proc., 2008.

[9] K. Ahn and E. Denney, “A framework for testing first-
order logic axioms in program verification,” Software Quality
Journal, pp. 1–42, Nov. 2011.

[10] E. Denney and B. Fischer, “Generating customized verifiers
for automatically generated code,” in Proc. Conf. Generative
Prog. and Component Eng. (GPCE), Oct. 2008, pp. 77–87.

[11] N. Basir, E. Denney, and B. Fischer, “Building heterogeneous
safety cases for automatically generated code,” in AIAA
Infotech@Aerospace Conf., 2011.

[12] T. Kelly and J. McDermid, “Safety case patterns – reusing
successful arguments,” in Proc. IEE Colloq. on Understand-
ing Patterns and Their Application to Sys. Eng., 1998.

[13] T. Kelly, “Arguing safety: A systematic approach to managing
safety cases,” Ph.D. thesis, Univ. of York, 1998.

[14] R. Weaver, “The safety of software – constructing and
assuring arguments,” Ph.D. thesis, Univ. of York, 2003.

[15] J. Rushby, “Formalism in safety cases,” in Proc. 18th Safety-
Critical Sys. Symp., Feb. 2010, pp. 3–17.

[16] N. Basir, E. Denney, and B. Fischer, “Deriving safety cases
for hierarchical structure in model-based development,” in
29th Intl. Conf. Comp. Safety, Reliability and Security (Safe-
Comp), 2010.

[17] E. Lee, I. Lee, and O. Sokolsky, “Assurance cases in model-
driven development of the pacemaker software,” in Proc.
4th Intl. Symp. Leveraging Application of Formal Methods,
Verification and Validation (ISoLA), Part II, LNCS 6416, Oct.
2010, pp. 343–356.

[18] Y. Matsuno, H. Takamura, and Y. Ishikawa, “Dependability
case editor with pattern library,” in Proc. 12th IEEE Intl.
Symp. High-Assurance Sys. Eng. (HASE), 2010, pp. 170–171.

[19] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A new
approach to creating clear safety arguments,” in Proc. 19th
Safety-Critical Sys. Symp., Feb. 2011.

[20] B. Littlewood and D. Wright, “The use of multilegged argu-
ments to increase confidence in safety claims for software-
based systems: A study based on a BBN analysis of an
idealized example,” IEEE Trans. Soft. Eng., vol. 33, no. 5,
pp. 347–365, May 2007.

[21] R. Bloomfield, B. Littlewood, and D. Wright, “Confidence:
its roles in dependability cases for risk assessment,” in Proc.
37th Intl. Conf. Dependable Sys. and Networks (DSN), 2007.

[22] E. Denney, I. Habli, and G. Pai, “Towards measurement of
confidence in safety cases,” in Proc. 5th Intl. Symp. Empirical
Soft. Eng. and Measurement (ESEM), Sept. 2011.

[23] A. Wassyng, T. Maibaum, M. Lawford, and H. Bherer,
“Software certification: Is there a case against safety cases?”
in Foundations Comp. Soft., Modeling, Dev. and Verification
of Adaptive Sys., LNCS 6662, 2011, pp. 206–227.

[24] K. Hayhurst, J. Maddalon, P. Miner, M. DeWalt, and G. Mc-
Cormick, “Unmanned aircraft hazards and their implications
for regulation,” in 25th IEEE/AIAA Digital Avionics Sys.
Conf., Oct. 2006, pp. 1–12.

[25] R. Clothier, J. Palmer, R. Walker, and N. Fulton, “Definition
of an airworthiness certification framework for civil
unmanned aircraft systems,” Safety Science, vol. 49, no. 6,
pp. 871–885, 2011.

http://www.goalstructuringnotation.info/

	Introduction
	Illustrative Example
	Target System Description
	System and Software Architecture
	Example Operation and Control
	Low-level Computations

	Approach
	Characterizing Heterogeneity
	Safety Assurance Methodology
	System Safety Process
	Safety Argumentation
	Software Verification Methodology
	Formal Verification

	Assembling the Safety Case
	From Formal Proofs to Safety Cases
	From Safety Cases to Formal Specifications

	Safety Analysis
	Hazard Analysis
	Swift UAS Safety Case
	Manually Created Safety Argument
	Automatically Generated Safety Argument

	Related Work
	Concluding Remarks

